Rotation matrices describe rotations about the origin.
The angle of rotation \(\theta\) is counterclockwise off of the positive x-axis (due east). It follows the same convention as the unit circle and the direction of vectors.
Rotation matrices are square matrices, orthogonal matrices and have a determinant of 1.
Notes
Rotation Matrix
\(R(\theta)=\left[{\begin{array}{cc}\cos{\theta} & -\sin{\theta} \\\sin{\theta} & \cos{\theta} \\\end{array} } \right]\)
To rotate \(\left[{\begin{array}{c}x \\y\\\end{array} } \right]\) by \(\theta\) degrees
\( \left[{\begin{array}{cc}\cos{\theta} & -\sin{\theta} \\\sin{\theta} & \cos{\theta} \\\end{array} } \right] \left[{\begin{array}{c}x \\y\\\end{array} } \right] = \left[{\begin{array}{c}x’ \\y’\\\end{array} } \right] \)
Practice Problems
\(\textbf{1)}\) \( \text{Find the rotation matrix for } 30^{\circ} \)
\(\textbf{2)}\) \( \text{Find the rotation matrix for } 45^{\circ} \)
\(\textbf{3)}\) \( \text{Find the rotation matrix for } 90^{\circ} \)
\(\textbf{4)}\) \( \text{Find the rotation matrix for } 135^{\circ} \)
\(\textbf{5)}\) \( \text{Find the rotation matrix for } 300^{\circ} \)
Perform the stated rotation
\(\textbf{6)}\) \( \text{Rotate the vector }\left[{\begin{array}{c}1 \\1\\\end{array} } \right] \text{ by } 30^{\circ} \)
\(\textbf{7)}\) \( \text{Rotate the vector }\left[{\begin{array}{c}5 \\5\\\end{array} } \right] \text{ by } 30^{\circ} \)
\(\textbf{8)}\) \( \text{Rotate the vector }\left[{\begin{array}{c}5 \\5\\\end{array} } \right] \text{ by } 45^{\circ} \)
\(\textbf{9)}\) \( \text{Rotate the vector }\left[{\begin{array}{c}1 \\-4\\\end{array} } \right] \text{ by } 45^{\circ} \)
\(\textbf{10)}\) \( \text{Rotate the vector }\left[{\begin{array}{c}2 \\3\\\end{array} } \right] \text{ by } 90^{\circ} \)
\(\textbf{11)}\) \( \text{Rotate the vector }\left[{\begin{array}{c}-8 \\3\\\end{array} } \right] \text{ by } 135^{\circ} \)
\(\textbf{12)}\) \( \text{Rotate the vector }\left[{\begin{array}{c}-5 \\-5\\\end{array} } \right] \text{ by } 300^{\circ} \)
See Related Pages\(\)
\(\bullet\text{ Intro to Matrices}\)
\(\,\,\,\,\,\,\,\,\)\(\left[ {\begin{array}{ccc}4 & -5 & 2 \\1 & 0 & 3 \\\end{array} } \right]\)
\(\bullet\text{ Matrix Operations}\)
\(\,\,\,\,\,\,\,\,\)\( \left[ {\begin{array}{ccc}3 & 45 & 6 \\-8 & 2 & 4 \\1 & 0 & 3 \\\end{array} } \right]\)\(+\left[ {\begin{array}{ccc}3 & 45 & 6 \\-8 & 2 & 4 \\1 & 0 & 3 \\\end{array} } \right]\)
\(\bullet\text{ Multiplying Matrices}\)
\(\,\,\,\,\,\,\,\,\)\(\left[{\begin{array}{cc} 1 & 2 \\ -3 & -4 \\\end{array} } \right]\)\(\left[ {\begin{array}{cc}6 & -3 \\5 & 0 \\\end{array} } \right]\)
\(\bullet\text{ Determinants}\)
\(\,\,\,\,\,\,\,\,\)\(\left|{\begin{array}{cc} a & b \\ c & d \\ \end{array} } \right|=ad-bc\)
\(\bullet\text{ Cramer’s Rule}\)
\(\,\,\,\,\,\,\,\,\text{ax+by=e } \& \text{ cx+dy=f}…\)
\(\bullet\text{ Identity Matrix}\)
\(\,\,\,\,\,\,\,\,\)\(\left[{\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]\)
\(\bullet\text{ Identity and Inverse Matrices}\)
\(\,\,\,\,\,\,\,\,A^{-1}=\displaystyle\frac{1}{ad-bc}\left[{\begin{array}{cc} a & b \\ c & d \\ \end{array} } \right]\)
\(\bullet\text{ Transpose Matrix}\)
\(\,\,\,\,\,\,\,\,\left[{\begin{array}{ccc} 1 \\ 2 \\ 5 \\ \end{array} } \right]\Rightarrow\left[{\begin{array}{c} 1 & 2 & 5 \end{array} } \right]\)
\(\bullet\text{ Rotation Matrix}\)
\(\,\,\,\,\,\,\,\,\)\(R(\theta)=\left[{\begin{array}{cc}\cos{\theta} & -\sin{\theta} \\\sin{\theta} & \cos{\theta} \\\end{array} } \right]\)
\(\bullet\text{ Eigenvectors and Eigenvalues}\)
\(\,\,\,\,\,\,\,\,(A-\lambda I)\vec{v}=\vec{0}\)
\(\bullet\text{ Andymath Homepage}\)
About Andymath.com
Andymath.com is a free math website with the mission of helping students, teachers and tutors find helpful notes, useful sample problems with answers including step by step solutions, and other related materials to supplement classroom learning. If you have any requests for additional content, please contact Andy at tutoring@andymath.com. He will promptly add the content.
Topics cover Elementary Math, Middle School, Algebra, Geometry, Algebra 2/Pre-calculus/Trig, Calculus and Probability/Statistics. In the future, I hope to add Physics and Linear Algebra content.
Visit me on Youtube, Tiktok, Instagram and Facebook. Andymath content has a unique approach to presenting mathematics. The clear explanations, strong visuals mixed with dry humor regularly get millions of views. We are open to collaborations of all types, please contact Andy at tutoring@andymath.com for all enquiries. To offer financial support, visit my Patreon page. Let’s help students understand the math way of thinking!
Thank you for visiting. How exciting!