Piecewise Functions Limits and Continuity

Andymath.com features free videos, notes, and practice problems with answers! Printable pages make math easy. Are you ready to be a mathmagician?

\(\textbf{1)}\) Find \( \displaystyle \lim_{x\to 2^{-}} f(x) \)
where \(f(x) = \begin{cases}
5x+3 & \text{if } x \lt 2 \\
4x & \text{if } x \geq 2
\end{cases}\)
Link to Youtube Video Solving Question Number 1


\(\textbf{2)}\) Find \( \displaystyle \lim_{x\to 2^{+}} f(x) \)
where \(f(x) = \begin{cases}
5x+3 & \text{if } x \lt 2 \\
4x & \text{if } x \geq 2
\end{cases}\)
Link to Youtube Video Solving Question Number 2


\(\textbf{3)}\) Find \( \displaystyle \lim_{x\to 2} f(x) \)
where \(f(x) = \begin{cases}
5x+3 & \text{if } x \lt 2 \\
4x & \text{if } x \geq 2
\end{cases}\)
Link to Youtube Video Solving Question Number 3


\(\textbf{4)}\) Find \( f(2) \)
where \(f(x) = \begin{cases}
5x+3 & \text{if } x \lt 2 \\
4x & \text{if } x \geq 2
\end{cases}\)
Link to Youtube Video Solving Question Number 4


\(\textbf{5)}\) Find \( \displaystyle \lim_{x\to 4^{-}} f(x) \)
where \(f(x) = \begin{cases}
-x+5 & \text{if } x\leq 4 \\
x-3 & \text{if } 4\lt x \lt 6 \\
x & \text{if }x\geq 6
\end{cases}\)


\(\textbf{6)}\) Find \( \displaystyle \lim_{x\to 4^{+}} f(x) \)
where \(f(x) = \begin{cases}
-x+5 & \text{if } x\leq 4 \\
x-3 & \text{if } 4\lt x \lt 6 \\
x & \text{if }x\geq 6
\end{cases}\)


\(\textbf{7)}\) Find \( \displaystyle \lim_{x\to 6^{-}} f(x) \)
where \(f(x) = \begin{cases}
-x+5 & \text{if } x\leq 4 \\
x-3 & \text{if } 4\lt x \lt 6 \\
x & \text{if }x\geq 6
\end{cases}\)


\(\textbf{8)}\) Find \( \displaystyle \lim_{x\to 6^{+}} f(x) \)
where \(f(x) = \begin{cases}
-x+5 & \text{if } x\leq 4 \\
x-3 & \text{if } 4\lt x \lt 6 \\
x & \text{if }x\geq 6
\end{cases}\)


\(\textbf{9)}\) Is the following continuous at \(x=4? \)
\(f(x) = \begin{cases}
-x+5 & \text{if } x\leq 4 \\
x-3 & \text{if } 4\lt x \lt 6 \\
x & \text{if }x\geq 6
\end{cases}\)
Link to Youtube Video Solving Question Number 9


\(\textbf{10)}\) Is the following continuous at \( x=6? \)
\(f(x) = \begin{cases}
-x+5 & \text{if } x\leq 4 \\
x-3 & \text{if } 4\lt x \lt 6 \\
x & \text{if }x\geq 6
\end{cases}\)
Link to Youtube Video Solving Question Number 10


\(\textbf{11)}\) Find the value of a that makes the function continuous.
\(f(x) = \begin{cases}
\frac{x^2+6x+5}{x+1} & \text{if } x \neq -1 \\
a & \text{if }x = -1
\end{cases}\)
Link to Youtube Video Solving Question Number 11


\(\textbf{12)}\) Find the values of a and b that make the function continuous at all points.
\(f(x) = \begin{cases}
2x^2 & \text{if } x\leq 2 \\
ax+b & \text{if } 2\lt x \lt 4 \\
x^2+4 & \text{if }x\geq 4
\end{cases}\)
Link to Youtube Video Solving Question Number 12


\(\textbf{13)}\) Find the value of k that makes the function continuous at all points.
\(f(x) = \begin{cases}
\sin{x} & \text{if } x\leq \pi \\
x-k & \text{if } x\geq \pi
\end{cases}\)



See Related Pages\(\)

\(\bullet\text{ Calculus Homepage}\)
\(\,\,\,\,\,\,\,\,\text{All the Best Topics…}\)
\(\bullet\text{ Limits on Graphs}\)
\(\,\,\,\,\,\,\,\,\)Thumbnail for Limits on Graph\(…\)
\(\bullet\text{ Continuity on Graphs}\)
\(\,\,\,\,\,\,\,\,\)Thumbnail for Continuity on Graphs\(…\)
\(\bullet\text{ Infinite Limits}\)
\(\,\,\,\,\,\,\,\,\displaystyle \lim_{x\to 4^{+}} \frac{5}{x-4}\)
\(\bullet\text{ Limits at Infinity}\)
\(\,\,\,\,\,\,\,\,\displaystyle\lim_{x\to \infty}\frac{5x^2+2x-10}{3x^2+4x-5}\)
\(\bullet\text{ Trig Limits}\)
\(\,\,\,\,\,\,\,\,\displaystyle \lim_{\theta\to0} \frac{\sin \theta}{\theta}=1\)


In Summary

Piecewise functions can be helpful for modeling real-world situations where a function behaves differently over different intervals.

Limits are a fundamental concept in calculus that describe the behavior of a function as the input approaches a particular value.

Continuity is another important concept in calculus that refers to the smoothness of a function. A function is considered continuous if it can be drawn without lifting the pen from the paper. Continuity is important for understanding how a function behaves and for making predictions about its values.

Piecewise functions, limits, and continuity are typically studied in advanced math courses, such as calculus or analysis. These concepts build upon foundational knowledge of algebra and trigonometry and are used to understand and analyze the behavior of functions.

About Andymath.com

Andymath.com is a free math website with the mission of helping students, teachers and tutors find helpful notes, useful sample problems with answers including step by step solutions, and other related materials to supplement classroom learning. If you have any requests for additional content, please contact Andy at tutoring@andymath.com. He will promptly add the content.

Topics cover Elementary Math, Middle School, Algebra, Geometry, Algebra 2/Pre-calculus/Trig, Calculus and Probability/Statistics. In the future, I hope to add Physics and Linear Algebra content.

Visit me on Youtube, Tiktok, Instagram and Facebook. Andymath content has a unique approach to presenting mathematics. The clear explanations, strong visuals mixed with dry humor regularly get millions of views. We are open to collaborations of all types, please contact Andy at tutoring@andymath.com for all enquiries. To offer financial support, visit my Patreon page. Let’s help students understand the math way of thinking!

Thank you for visiting. How exciting!