Trigonometric Identities

Andymath.com features free videos, notes, and practice problems with answers! Printable pages make math easy. Are you ready to be a mathmagician?

Lesson


Problems

Verify the following.

\(\textbf{1)}\) \( \cos{⁡x} \sec{⁡x} = 1 \)Link to Youtube Video Solving Question Number 1


\(\textbf{2)}\) \( \tan⁡{x} \cot{⁡x}=1 \)Link to Youtube Video Solving Question Number 2


\(\textbf{3)}\) \( \displaystyle \frac{\sin{x}}{\tan{x}} = \cos{x} \)Link to Youtube Video Solving Question Number 3


\(\textbf{4)}\) \( \displaystyle \sec{⁡x}+\tan{⁡x} = \frac{1+\sin{⁡x}}{\cos{⁡x}} \)Link to Youtube Video Solving Question Number 4


\(\textbf{5)}\) \( \cos⁡{x} \csc⁡{x} + \tan{x} = \sec{x} \csc{⁡x} \)Link to Youtube Video Solving Question Number 5


\(\textbf{6)}\) \( \sec⁡{x}-\tan{⁡x}\sin⁡{x} = \cos{⁡x} \)Link to Youtube Video Solving Question Number 6


\(\textbf{7)}\) \( \tan{⁡x}+\cot⁡{x}=\sec⁡{x}\csc{⁡x} \)Link to Youtube Video Solving Question Number 7


\(\textbf{8)}\) \( \csc ^2 {x} (1-\cos ^2 {x}) = 1 \)Link to Youtube Video Solving Question Number 8


\(\textbf{9)}\) \( \tan ^2 {x} (\csc ^2 {x}-1) = 1 \)Link to Youtube Video Solving Question Number 9


\(\textbf{10)}\) \( \displaystyle \frac{\sin{x}}{\tan{x}} + \frac{\cos{x}}{\cot{x}} = \sin{x} + \cos{x} \)Link to Youtube Video Solving Question Number 10


\(\textbf{11)}\) \( \displaystyle \sec{x} – \cos{x} =\frac{\tan^2{x}}{\sec{x} } \)Link to Youtube Video Solving Question Number 11


\(\textbf{12)}\) \( \sin ^2 {x} -\cos ^2 {x} = 1-2\cos ^2 {x} \)Link to Youtube Video Solving Question Number 12


\(\textbf{13)}\) \( \displaystyle -\sec{x}\tan{x} = \frac{\csc{x}}{1-\csc^2{x}} \)
Link to Youtube Video Solving Question Number 13


\(\textbf{14)}\) \( \tan ^2 {x} -\sin ^2 {x} =\tan ^2 {x} \sin ^2 {x} \)Link to Youtube Video Solving Question Number 14


\(\textbf{15)}\) \( \displaystyle \frac{\sin{x}\cos{x}}{(\sin{x}+\cos{x})^2-1}=\frac{1}{2} \)Link to Youtube Video Solving Question Number 15


\(\textbf{16)}\) \( \sin{x} + \csc{x}\cos^2{x} = \csc{x} \)Link to Youtube Video Solving Question Number 16


\(\textbf{17)}\) \( \cot ^2 {x} -\cos ^2 {x} =\cot ^2 {x} \cos ^2 {x} \)
Link to Youtube Video Solving Question Number 17


\(\textbf{18)}\) \( (\sin{x}+\cos{x})^4 = (1+2\sin{x}\cos{x})^2 \)
Link to Youtube Video Solving Question Number 18


\(\textbf{19)}\) \( \displaystyle \frac{\sec{x}}{\sec{x}-\cos{x}} = \csc^2{x} \)Link to Youtube Video Solving Question Number 19


\(\textbf{20)}\) \( (\csc{x}-\cot{x})(\cos{x}+1)=\sin{x} \)
Link to Youtube Video Solving Question Number 20


\(\textbf{21)}\) \( 2\sin ^2 {x} -1=1-2\cos ^2 {x} \)
Link to Youtube Video Solving Question Number 21


\(\textbf{22)}\) \( \sin ^4 {x} -\cos ^4 {x} =\sin ^2 {x} -\cos ^2 {x} \)
Link to Youtube Video Solving Question Number 22


\(\textbf{23)}\) \( (1-\sin ^2 {x} )(1+\sin ^2 {x} )=1-\sin ^4 {x} \)
Link to Youtube Video Solving Question Number 23


\(\textbf{24)}\) \( \displaystyle \frac{\tan{x}+\cot{x}}{\sin{x}\cos{x}} =\sec^2{x}+\csc^2{x} \)
Link to Youtube Video Solving Question Number 24


\(\textbf{25)}\) \( \displaystyle \frac{1-\tan^2{x}}{1+\tan^2{x}}=\cos^2{x} -\sin^2{x} \)
Link to Youtube Video Solving Question Number 25


\(\textbf{26)}\) \( \displaystyle \frac{1+\sec^2{x}}{1+\tan^2{x}}=1+\cos^2{x} \)
Link to Youtube Video Solving Question Number 26


\(\textbf{27)}\) \( \displaystyle \frac{\sin{x} +\cos{x} }{\sec{x} +\csc{x} }= \sin{x} \cos{x} \)
Link to Youtube Video Solving Question Number 27


\(\textbf{28)}\) \( \displaystyle \frac{\csc{x} +\sec{x} }{\cot{x} +\tan{x} }= \sin{x} +\cos{x} \)
Link to Youtube Video Solving Question Number 28


\(\textbf{29)}\) \( \displaystyle \frac{1-\cos{x}}{\sin{x} }+\frac{\sin{x}}{1-\cos{x}}= 2\csc{x} \)
Link to Youtube Video Solving Question Number 29


\(\textbf{30)}\) \( \displaystyle \frac{\cot{x} -\csc{x} }{1-\sec{x} }=\cot{x} \)
Link to Youtube Video Solving Question Number 30


\(\textbf{31)}\) \( \tan ^2 {x} -\sin ^2 {x} =\tan ^2 {x} \sin ^2 {x} \)
Link to Youtube Video Solving Question Number 31


\(\textbf{32)}\) \( \sec ^4 {x} -\tan ^4 {x} =\sec ^2 {x} +\tan ^2 {x} \)
Link to Youtube Video Solving Question Number 32


\(\textbf{33)}\) \( \cos ^2 {x} -cos ^4 {x} =\cos ^2 {x} \sin ^2 {x} \)


\(\textbf{34)} \) \( \displaystyle \frac{\sin{2x}}{\sin{x}}-\frac{\cos{2x}}{\cos{x}}=\sec{x}\)


\(\textbf{35)} \) \( \displaystyle \frac{1-\tan^2{x}}{1+\tan^2{x}}=\cos{2x}\)


\(\textbf{36)}\) \(\displaystyle \frac{\sin ^2{x}}{1-\cos{x}}= \cos{x}+1\)


\(\textbf{37)}\) \(\displaystyle \left(\cot{x}\right)\left(\cot{x}+\tan{x}\right)= \csc ^2{x}\)


\(\textbf{38)}\) \(\displaystyle \frac{1+\tan ^2{x}}{\csc ^2{x}}= \tan ^2{x}\)


\(\textbf{39)}\) \(\displaystyle \cos ^2{x}+\tan ^2{x}\cos ^2{x}=1\)



See Related Pages\(\)

\(\bullet\text{ Right Triangle Trigonometry}\)
\(\,\,\,\,\,\,\,\,\sin{(x)}=\displaystyle\frac{\text{opp}}{\text{hyp}}…\)
\(\bullet\text{ Angle of Depression and Elevation}\)
\(\,\,\,\,\,\,\,\,\text{Angle of Depression}=\text{Angle of Elevation}…\)
\(\bullet\text{ Convert to Radians and to Degrees}\)
\(\,\,\,\,\,\,\,\,\text{Radians} \rightarrow \text{Degrees}, \times \displaystyle \frac{180^{\circ}}{\pi}…\)
\(\bullet\text{ Degrees, Minutes and Seconds}\)
\(\,\,\,\,\,\,\,\,48^{\circ}34’21”…\)
\(\bullet\text{ Coterminal Angles}\)
\(\,\,\,\,\,\,\,\,\pm 360^{\circ} \text { or } \pm 2\pi n…\)
\(\bullet\text{ Reference Angles}\)
\(\,\,\,\,\,\,\,\,\)Thumbnail of Reference Angles\(…\)
\(\bullet\text{ Find All 6 Trig Functions}\)
\(\,\,\,\,\,\,\,\,\)Thumbnail of all 6 Trig Functions\(…\)
\(\bullet\text{ Unit Circle}\)
\(\,\,\,\,\,\,\,\,\sin{(60^{\circ})}=\displaystyle\frac{\sqrt{3}}{2}…\)
\(\bullet\text{ Law of Sines}\)
\(\,\,\,\,\,\,\,\,\displaystyle\frac{\sin{A}}{a}=\frac{\sin{B}}{b}=\frac{\sin{C}}{c}\) Thumbnail of generic triangle\(…\)
\(\bullet\text{ Area of SAS Triangles}\)
\(\,\,\,\,\,\,\,\,\text{Area}=\frac{1}{2}ab \sin{C}\) Thumbnail of generic triangle\(…\)
\(\bullet\text{ Law of Cosines}\)
\(\,\,\,\,\,\,\,\,a^2=b^2+c^2-2bc \cos{A}\) Thumbnail of generic triangle\(…\)
\(\bullet\text{ Area of SSS Triangles (Heron’s formula)}\)
\(\,\,\,\,\,\,\,\,\text{Area}=\sqrt{s(s-a)(s-b)(s-c)}\) Thumbnail of generic triangle\(…\)
\(\bullet\text{ Geometric Mean}\)
\(\,\,\,\,\,\,\,\,x=\sqrt{ab} \text{ or } \displaystyle\frac{a}{x}=\frac{x}{b}…\)
\(\bullet\text{ Geometric Mean- Similar Right Triangles}\)
\(\,\,\,\,\,\,\,\,\)Thumbnail of similar right triangles\(…\)
\(\bullet\text{ Inverse Trigonmetric Functions}\)
\(\,\,\,\,\,\,\,\,\sin {\left(cos^{-1}\left(\frac{3}{5}\right)\right)}…\)
\(\bullet\text{ Sum and Difference of Angles Formulas}\)
\(\,\,\,\,\,\,\,\,\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}…\)
\(\bullet\text{ Double-Angle and Half-Angle Formulas}\)
\(\,\,\,\,\,\,\,\,\sin{(2A)}=2\sin{(A)}\cos{(A)}…\)
\(\bullet\text{ Trigonometry-Pythagorean Identities}\)
\(\,\,\,\,\,\,\,\,\sin^2{(x)}+\cos^2{(x)}=1…\)
\(\bullet\text{ Product-Sum Identities}\)
\(\,\,\,\,\,\,\,\,\cos{\alpha}\cos{\beta}=\left(\displaystyle\frac{\cos{(\alpha+\beta)}+\cos{(\alpha-\beta)}}{2}\right)…\)
\(\bullet\text{ Cofunction Identities}\)
\(\,\,\,\,\,\,\,\,\sin{(x)}=\cos{(\frac{\pi}{2}-x)}…\)
\(\bullet\text{ Proving Trigonometric Identities}\)
\(\,\,\,\,\,\,\,\,\sec{x}-\cos{x}=\displaystyle\frac{\tan^2{x}}{\sec{x}}…\)
\(\bullet\text{ Graphing Trig Functions- sin and cos}\)
\(\,\,\,\,\,\,\,\,f(x)=A \sin{B(x-c)}+D \) Thumbnail of a Sine Graph\(…\)
\(\bullet\text{ Solving Trigonometric Equations}\)
\(\,\,\,\,\,\,\,\,2\cos{(x)}=\sqrt{3}…\)


In Summary

Trigonometry identities show all the unique ways that trigonometric functions like sine, cosine, tangent, cotangent, secant, and cosecant interact with each other.

One The most commonly used trigonometry identities are the Pythagorean Identities.

\(\sin^2 \theta + \cos^2 \theta = 1\)
\(1 + \tan^2 \theta = \sec^2 \theta\)
\(1+ \cot^2 \theta = \csc^2 \theta\)

Here is a video explaining how these are derived.
Link to Youtube Video Showing How to Derive the Pythagorean Identities

There are many other useful trigonometric identities. Try the examples above to see how they can be used to verify other trigonometric identities.

About Andymath.com

Andymath.com is a free math website with the mission of helping students, teachers and tutors find helpful notes, useful sample problems with answers including step by step solutions, and other related materials to supplement classroom learning. If you have any requests for additional content, please contact Andy at tutoring@andymath.com. He will promptly add the content.

Topics cover Elementary Math, Middle School, Algebra, Geometry, Algebra 2/Pre-calculus/Trig, Calculus and Probability/Statistics. In the future, I hope to add Physics and Linear Algebra content.

Visit me on Youtube, Tiktok, Instagram and Facebook. Andymath content has a unique approach to presenting mathematics. The clear explanations, strong visuals mixed with dry humor regularly get millions of views. We are open to collaborations of all types, please contact Andy at tutoring@andymath.com for all enquiries. To offer financial support, visit my Patreon page. Let’s help students understand the math way of thinking!

Thank you for visiting. How exciting!