Andymath.com features free videos, notes, and practice problems with answers! Printable pages make math easy. Are you ready to be a mathmagician?
Lesson
VIDEO
Problems
Verify the following.
\(\textbf{1)}\) \( \cos{x} \sec{x} = 1 \)
\(\,\,\,\,\, \cos{x} \sec{x} = 1 \,\,\,\,\,\)\(\left(\text{Given}\right)\)
\(\,\,\,\,\, \cos{x} \cdot \frac{1}{\cos{x}} = 1 \,\,\,\,\,\)\(\left(\sec{x}=\frac{1}{\cos{x}}\right)\)
\(\,\,\,\,\, 1 = 1 \,\,\,\,\,\)\(\left(\text{Inverse Property of Multiplication}\right)\)
\(\textbf{2)}\) \( \tan{x} \cot{x}=1 \)
\(\,\,\,\,\, \tan{x} \cot{x} = 1 \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \frac{\sin{x}}{\cos{x}} \cdot \cot{x} = 1 \,\,\,\,\,\left(\tan{x}=\frac{\sin{x}}{\cos{x}}\right)\)
\(\,\,\,\,\, \frac{\sin{x}}{\cos{x}} \cdot \frac{\cos{x}}{\sin{x}} = 1 \,\,\,\,\,\left(\cot{x}=\frac{\cos{x}}{\sin{x}}\right)\)
\(\,\,\,\,\, 1 = 1 \,\,\,\,\,\left(\text{Inverse Property of Multiplication}\right)\)
\(\textbf{3)}\) \( \displaystyle \frac{\sin{x}}{\tan{x}} = \cos{x} \)
\(\,\,\,\,\, \frac{\sin{x}}{\tan{x}} = \cos{x} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \sin{x} \cdot \frac{1}{\tan{x}} = \cos{x} \,\,\,\,\,\left(\text{Split the fraction}\right)\)
\(\,\,\,\,\, \sin{x} \cdot \cot{x} = \cos{x} \,\,\,\,\,\left(\cot{x}=\frac{1}{\tan{x}}\right)\)
\(\,\,\,\,\, \sin{x} \cdot \frac{\cos{x}}{\sin{x}} = \cos{x} \,\,\,\,\,\left(\cot{x}=\frac{\cos{x}}{\sin{x}}\right)\)
\(\,\,\,\,\, \cos{x} = \cos{x} \,\,\,\,\,\left(\frac{\sin{x}}{\sin{x}}=1\right)\)
\(\textbf{4)}\) \( \displaystyle \sec{x}+\tan{x} = \frac{1+\sin{x}}{\cos{x}} \)
\(\,\,\,\,\, \sec{x}+\tan{x} = \frac{1+\sin{x}}{\cos{x}} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \frac{1}{\cos{x}}+\tan{x} = \frac{1+\sin{x}}{\cos{x}} \,\,\,\,\,\left(\sec{x}=\frac{1}{\cos{x}}\right)\)
\(\,\,\,\,\, \frac{1}{\cos{x}}+\frac{\sin{x}}{\cos{x}} = \frac{1+\sin{x}}{\cos{x}} \,\,\,\,\,\left(\tan{x}=\frac{\sin{x}}{\cos{x}}\right)\)
\(\,\,\,\,\, \frac{1+\sin{x}}{\cos{x}} = \frac{1+\sin{x}}{\cos{x}} \,\,\,\,\,\left(\text{Combine Fractions with Common Denominator}\right)\)
\(\textbf{5)}\) \( \cos{x} \csc{x} + \tan{x} = \sec{x} \csc{x} \)
\(\,\,\,\,\, \cos{x} \csc{x} + \tan{x} = \sec{x} \csc{x} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \cos{x} \cdot \frac{1}{\sin{x}} + \tan{x} = \sec{x} \csc{x} \,\,\,\,\,\left(\csc{x}=\frac{1}{\sin{x}}\right)\)
\(\,\,\,\,\, \cos{x} \cdot \frac{1}{\sin{x}} + \frac{\sin{x}}{\cos{x}} = \sec{x} \csc{x} \,\,\,\,\,\left(\tan{x}=\frac{\sin{x}}{\cos{x}}\right)\)
\(\,\,\,\,\, \frac{\cos{x}}{\sin{x}} + \frac{\sin{x}}{\cos{x}} = \sec{x} \csc{x} \,\,\,\,\,\left(\text{Multiply Fractions}\right)\)
\(\,\,\,\,\, \frac{\cos{x} \cdot \cos{x}}{\sin{x} \cdot \cos{x}} + \frac{\sin{x} \cdot \sin{x}}{\cos{x} \cdot \sin{x}} = \sec{x} \csc{x} \,\,\,\,\,\left(\text{Common Denominators}\right)\)
\(\,\,\,\,\, \frac{\cos^2{x}}{\sin{x} \cos{x}} + \frac{\sin^2{x}}{\cos{x} \sin{x}} = \sec{x} \csc{x} \,\,\,\,\,\left(\text{Simplify}\right)\)
\(\,\,\,\,\, \frac{\cos^2{x}+\sin^2{x}}{\sin{x} \cos{x}} = \sec{x} \csc{x} \,\,\,\,\,\left(\text{Combine Fractions}\right)\)
\(\,\,\,\,\, \frac{1}{\sin{x} \cos{x}} = \sec{x} \csc{x} \,\,\,\,\,\left(\sin^2{x}+\cos^2{x}=1\right)\)
\(\,\,\,\,\, \frac{1}{\cos{x}} \cdot \frac{1}{\sin{x}} = \sec{x} \csc{x} \,\,\,\,\,\left(\text{Split into two fractions}\right)\)
\(\,\,\,\,\, \sec{x} \cdot \frac{1}{\sin{x}} = \sec{x} \csc{x} \,\,\,\,\,\left(\frac{1}{\cos{x}}=\sec{x}\right)\)
\(\,\,\,\,\, \sec{x} \cdot \csc{x} = \sec{x} \csc{x} \,\,\,\,\,\left(\frac{1}{\sin{x}}=\csc{x}\right)\)
\(\textbf{6)}\) \( \sec{x}-\tan{x}\sin{x} = \cos{x} \)
\(\,\,\,\,\, \sec{x}-\tan{x}\sin{x} = \cos{x} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \frac{1}{\cos{x}}-\tan{x}\sin{x} = \cos{x} \,\,\,\,\,\left(\sec{x}=\frac{1}{\cos{x}}\right)\)
\(\,\,\,\,\, \frac{1}{\cos{x}}-\frac{\sin{x}}{\cos{x}}\sin{x} = \cos{x} \,\,\,\,\,\left(\tan{x}=\frac{\sin{x}}{\cos{x}}\right)\)
\(\,\,\,\,\, \frac{1}{\cos{x}}-\frac{\sin^2{x}}{\cos{x}} = \cos{x} \,\,\,\,\,\left(\text{Multiply Fractions}\right)\)
\(\,\,\,\,\, \frac{1-\sin^2{x}}{\cos{x}} = \cos{x} \,\,\,\,\,\left(\text{Combine Fractions with Common Denominator}\right)\)
\(\,\,\,\,\, \frac{\cos^2{x}}{\cos{x}} = \cos{x} \,\,\,\,\,\left(\sin^2{x}+\cos^2{x}=1\right)\)
\(\,\,\,\,\, \cos{x} = \cos{x} \,\,\,\,\,\left(\frac{\cos{x}}{\cos{x}}=1\right)\)
\(\textbf{7)}\) \( \tan{x}+\cot{x}=\sec{x}\csc{x} \)
\(\,\,\,\,\, \tan{x}+\cot{x}=\sec{x}\csc{x} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \frac{\sin{x}}{\cos{x}}+\cot{x}=\sec{x}\csc{x} \,\,\,\,\,\left(\tan{x}=\frac{\sin{x}}{\cos{x}}\right)\)
\(\,\,\,\,\, \frac{\sin{x}}{\cos{x}}+\frac{\cos{x}}{\sin{x}}=\sec{x}\csc{x} \,\,\,\,\,\left(\cot{x}=\frac{\cos{x}}{\sin{x}}\right)\)
\(\,\,\,\,\, \frac{\sin{x}}{\sin{x}}\cdot\frac{\sin{x}}{\cos{x}}+\frac{\cos{x}}{\sin{x}}\cdot\frac{\cos{x}}{\cos{x}}=\sec{x}\csc{x} \,\,\,\,\,\left(\text{Common Denominators}\right)\)
\(\,\,\,\,\, \frac{\sin^2{x}}{\cos{x}\sin{x}}+\frac{\cos^2{x}}{\cos{x}\sin{x}}=\sec{x}\csc{x} \,\,\,\,\,\left(\text{Simplify}\right)\)
\(\,\,\,\,\, \frac{\sin^2{x}+\cos^2{x}}{\cos{x}\sin{x}}=\sec{x}\csc{x} \,\,\,\,\,\left(\text{Combine Fractions with Common Denominator}\right)\)
\(\,\,\,\,\, \frac{1}{\cos{x}\sin{x}}=\sec{x}\csc{x} \,\,\,\,\,\left(\text{Pythagorean Identities } \sin^2{x}+\cos^2{x}=1 \right)\)
\(\,\,\,\,\, \frac{1}{\cos{x}}\cdot\frac{1}{\sin{x}}=\sec{x}\csc{x} \,\,\,\,\,\left(\text{Split into two fractions} \right)\)
\(\,\,\,\,\, \sec{x}\cdot\frac{1}{\sin{x}}=\sec{x}\csc{x} \,\,\,\,\,\left(\sec{x}=\frac{1}{\cos{x}}\right)\)
\(\,\,\,\,\, \sec{x}\cdot\csc{x}=\sec{x}\csc{x} \,\,\,\,\,\left(\csc{x}=\frac{1}{\sin{x}}\right)\)
\(\textbf{8)}\) \( \csc ^2 {x} (1-\cos ^2 {x}) = 1 \)
\(\,\,\,\,\, \csc ^2 {x} (1-\cos ^2 {x}) = 1 \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \frac{1}{\sin^2{x}} (1-\cos ^2 {x}) = 1 \,\,\,\,\,\left(\csc^2{x}=\frac{1}{\sin^2{x}}\right)\)
\(\,\,\,\,\, \frac{1}{\sin^2{x}} (\sin ^2 {x}) = 1 \,\,\,\,\,\left(1-\cos^2{x}=\sin^2{x}\right)\)
\(\,\,\,\,\, 1 = 1 \,\,\,\,\,\left(\frac{\sin^2{x}}{\sin^2{x}}=1\right)\)
\(\textbf{9)}\) \( \tan ^2 {x} (\csc ^2 {x}-1) = 1 \)
\(\,\,\,\,\, \tan ^2 {x} (\csc ^2 {x}-1) = 1 \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \tan ^2 {x} \cdot \cot ^2 {x} = 1 \,\,\,\,\,\left(\csc^2{x}-1=cot^2{x}\right)\)
\(\,\,\,\,\, \tan ^2 {x} \cdot \displaystyle \frac{1}{tan^2{x}} = 1 \,\,\,\,\,\left(\cot^2{x}=\frac{1}{tan^2{x}}\right)\)
\(\,\,\,\,\, 1 = 1 \,\,\,\,\,\left(\frac{\tan^2{x}}{\tan^2{x}}=1\right)\)
\(\textbf{10)}\) \( \displaystyle \frac{\sin{x}}{\tan{x}} + \frac{\cos{x}}{\cot{x}} = \sin{x} + \cos{x} \)
\(\,\,\,\,\, \frac{\sin{x}}{\tan{x}} + \frac{\cos{x}}{\cot{x}} = \sin{x} + \cos{x} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \sin{x} \cdot \frac{1}{\tan{x}} + \cos{x} \cdot \frac{1}{\cot{x}} = \sin{x} + \cos{x} \,\,\,\,\,\left(\text{Split the fractions}\right)\)
\(\,\,\,\,\, \sin{x} \cdot \cot{x} + \cos{x} \cdot \frac{1}{\cot{x}} = \sin{x} + \cos{x} \,\,\,\,\,\left(\cot{x}=\frac{1}{\tan{x}}\right)\)
\(\,\,\,\,\, \sin{x} \cdot \cot{x} + \cos{x} \cdot \tan{x} = \sin{x} + \cos{x} \,\,\,\,\,\left(\tan{x}=\frac{1}{\cot{x}}\right)\)
\(\,\,\,\,\, \sin{x} \cdot \frac{\cos{x}}{\sin{x}} + \cos{x} \cdot \tan{x} = \sin{x} + \cos{x} \,\,\,\,\,\left(\cot{x}=\frac{\cos{x}}{\sin{x}}\right)\)
\(\,\,\,\,\, \sin{x} \cdot \frac{\cos{x}}{\sin{x}} + \cos{x} \cdot \frac{\sin{x}}{cos{x}} = \sin{x} + \cos{x} \,\,\,\,\,\left(\tan{x}=\frac{\sin{x}}{\cos{x}}\right)\)
\(\,\,\,\,\, \cos{x} + \sin{x} = \sin{x} + \cos{x} \,\,\,\,\,\left(\text{Simplify}\right)\)
\(\,\,\,\,\, \sin{x} + \cos{x} = \sin{x} + \cos{x} \,\,\,\,\,\left(\text{Commutative Property}\right)\)
\(\textbf{11)}\) \( \displaystyle \sec{x} – \cos{x} =\frac{\tan^2{x}}{\sec{x} } \)
\(\,\,\,\,\, \displaystyle \sec{x} – \cos{x} =\frac{\tan^2{x}}{\sec{x} } \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \displaystyle \sec{x} – \cos{x} =\frac{\sec^2{x}-1}{\sec{x} } \,\,\,\,\,\left(\tan^2{x}=\sec^2{x}-1\right)\)
\(\,\,\,\,\, \displaystyle \sec{x} – \cos{x} =\frac{\sec^2{x}}{\sec{x} }-\frac{1}{\sec{x} } \,\,\,\,\,\left(\text{Split the fraction}\right)\)
\(\,\,\,\,\, \displaystyle \sec{x} – \cos{x} =\sec{x}-\frac{1}{\sec{x} } \,\,\,\,\,\left(\frac{sec^2{x}}{\sec{x}}=\sec{x}\right)\)
\(\,\,\,\,\, \displaystyle \sec{x} – \cos{x} =\sec{x}-\cos{x}\,\,\,\,\,\left(\cos{x}=\frac{1}{\sec{x}}\right)\)
\(\textbf{12)}\) \( \sin ^2 {x} -\cos ^2 {x} = 1-2\cos ^2 {x} \)
\(\,\,\,\,\, \sin ^2 {x} -\cos ^2 {x} = 1-2\cos ^2 {x} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, 1- \cos ^2 {x} -\cos ^2 {x} = 1-2\cos ^2 {x} \,\,\,\,\,\left(\sin ^2 {x}=1-\cos ^2 {x}\right)\)
\(\,\,\,\,\, 1- 2\cos ^2 {x} = 1-2\cos ^2 {x} \,\,\,\,\,\left(\cos ^2 {x}+\cos ^2 {x} =2\cos ^2 {x}\right)\)
\(\textbf{13)}\) \( \displaystyle -\sec{x}\tan{x} = \frac{\csc{x}}{1-\csc^2{x}} \)
\(\,\,\,\,\, \displaystyle -\sec{x}\tan{x} = \frac{\csc{x}}{1-\csc^2{x}} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \displaystyle -\sec{x}\tan{x} = \frac{\csc{x}}{-\cot^2{x}} \,\,\,\,\,\left(1-\csc^2{x}=-\cot^2{x}\right)\)
\(\,\,\,\,\, \displaystyle -\sec{x}\tan{x} = -\frac{\csc{x}}{1} \cdot \frac{1}{\cot^2{x}} \,\,\,\,\,\left(\text{Split the fractions}\right)\)
\(\,\,\,\,\, \displaystyle -\sec{x}\tan{x} = -\frac{1}{\sin{x}} \cdot \frac{1}{\cot^2{x}} \,\,\,\,\,\left(\csc{x}=\frac{1}{\sin{x}}\right)\)
\(\,\,\,\,\, \displaystyle -\sec{x}\tan{x} = -\frac{1}{\sin{x}} \cdot tan^2{x} \,\,\,\,\,\left(\tan^2{x}=\frac{1}{\cot^2{x}}\right)\)
\(\,\,\,\,\, \displaystyle -\sec{x}\tan{x} = -\frac{1}{\sin{x}} \cdot \frac{\sin^2{x}}{\cos^2{x}} \,\,\,\,\,\left(\tan^2{x}=\frac{\sin^2{x}}{\cos^2{x}}\right)\)
\(\,\,\,\,\, \displaystyle -\sec{x}\tan{x} = – \frac{\sin{x}}{\cos^2{x}} \,\,\,\,\,\left(\frac{\sin{x}}{\cos{x}}=1\right)\)
\(\,\,\,\,\, \displaystyle -\sec{x}\tan{x} = – \frac{1}{\cos{x}} \cdot \frac{\sin{x}}{\cos{x}} \,\,\,\,\,\left(\text{Split the fraction}\right)\)
\(\,\,\,\,\, \displaystyle -\sec{x}\tan{x} = – \sec{x} \cdot \frac{\sin{x}}{\cos{x}} \,\,\,\,\,\left(\frac{1}{\cos{x}}=\sec{x}\right)\)
\(\,\,\,\,\, \displaystyle -\sec{x}\tan{x} = – \sec{x} \cdot \tan{x} \,\,\,\,\,\left(\frac{\sin{x}}{\cos{x}}=\tan{x}\right)\)
\(\textbf{14)}\) \( \tan ^2 {x} -\sin ^2 {x} =\tan ^2 {x} \sin ^2 {x} \)
\(\,\,\,\,\, \tan ^2 {x} -\sin ^2 {x} =\tan ^2 {x} \sin ^2 {x} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \displaystyle \frac{\sin^2{x}}{\cos^2{x}} -\sin ^2 {x} =\tan ^2 {x} \sin ^2 {x} \,\,\,\,\,\left(\tan^2{x}=\frac{\sin^2{x}}{\cos^2{x}}\right)\)
\(\,\,\,\,\, \displaystyle \sin ^2 {x} \left(\frac{1}{\cos^2{x}} -1 \right) =\tan ^2 {x} \sin ^2 {x} \,\,\,\,\,\left(\text{Factor out } \sin^2{x}\right)\)
\(\,\,\,\,\, \displaystyle \sin ^2 {x} \left( \sec^2{x} -1 \right) =\tan ^2 {x} \sin ^2 {x} \,\,\,\,\,\left(\sec^2{x}=\frac{1}{\cos^2{x}}\right)\)
\(\,\,\,\,\, \displaystyle \tan^2{x} \sin ^2 {x} =\tan ^2 {x} \sin ^2 {x} \,\,\,\,\,\left(\text{Commutative Property of Multiplication}\right)\)
\(\textbf{15)}\) \( \displaystyle \frac{\sin{x}\cos{x}}{(\sin{x}+\cos{x})^2-1}=\frac{1}{2} \)
\(\,\,\,\,\, \displaystyle \frac{\sin{x}\cos{x}}{(\sin{x}+\cos{x})^2-1}=\frac{1}{2} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \displaystyle \frac{\sin{x}\cos{x}}{(\sin{x}+\cos{x})(\sin{x}+\cos{x})-1}=\frac{1}{2} \,\,\,\,\,\left(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)\right)\)
\(\,\,\,\,\, \displaystyle \frac{\sin{x}\cos{x}}{\sin^2{x}+2\sin{x}\cos{x}+\cos^2{x}-1}=\frac{1}{2} \,\,\,\,\,\left(\left(a+b\right)\left(a+b\right)=a^2+2ab+b^2\right)\)
\(\,\,\,\,\, \displaystyle \frac{\sin{x}\cos{x}}{2\sin{x}\cos{x}+1-1}=\frac{1}{2} \,\,\,\,\,\left(\sin^2{x}+\cos^2{x}=1\right)\)
\(\,\,\,\,\, \displaystyle \frac{\sin{x}\cos{x}}{2\sin{x}\cos{x}}=\frac{1}{2} \,\,\,\,\,\left(1-1=0\right)\)
\(\,\,\,\,\, \displaystyle \frac{1}{2}=\frac{1}{2} \,\,\,\,\,\left(\frac{\sin{x}\cos{x}}{\sin{x}\cos{x}}=1\right)\)
\(\textbf{16)}\) \( \sin{x} + \csc{x}\cos^2{x} = \csc{x} \)
\(\,\,\,\,\, \sin{x} + \csc{x}\cos^2{x} = \csc{x} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \sin{x} + \frac{1}{\sin{x}} \cdot \cos^2{x} = \csc{x} \,\,\,\,\,\left(\csc{x}=\frac{1}{\sin{x}}\right)\)
\(\,\,\,\,\, \frac{\sin{x}}{\sin{x}} \cdot \frac{\sin{x}}{1} + \frac{1}{\sin{x}} \cdot \cos^2{x} = \csc{x} \,\,\,\,\,\left(\frac{\sin{x}}{\sin{x}}=1\right)\)
\(\,\,\,\,\, \frac{\sin^2{x}}{\sin{x}} + \frac{\cos^2{x}}{\sin{x}} = \csc{x} \,\,\,\,\,\left(\sin{x} \cdot \sin{x}= \sin^2{x}\right)\)
\(\,\,\,\,\, \frac{\sin^2{x}+\cos^2{x}}{\sin{x}} = \csc{x} \,\,\,\,\,\left(\text{Fractions with common denominator}\right)\)
\(\,\,\,\,\, \frac{1}{\sin{x}} = \csc{x} \,\,\,\,\,\left(\sin^2{x}+\cos^2{x}=1\right)\)
\(\,\,\,\,\, \csc{x} = \csc{x} \,\,\,\,\,\left(\frac{1}{\sin{x}} = \csc{x}\right)\)
\(\textbf{17)}\) \( \cot ^2 {x} -\cos ^2 {x} =\cot ^2 {x} \cos ^2 {x} \)
\(\,\,\,\,\, \cot ^2 {x} -\cos ^2 {x} =\cot ^2 {x} \cos ^2 {x} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \frac{\cos^2{x}}{\sin^2{x}} -\cos ^2 {x} =\cot ^2 {x} \cos ^2 {x} \,\,\,\,\,\left(\cot^2{x}=\frac{\cos^2{x}}{\sin^2{x}}\right)\)
\(\,\,\,\,\, \cos^2{x}\left(\frac{1}{\sin^2{x}} -1\right) =\cot ^2 {x} \cos ^2 {x} \,\,\,\,\,\left(\text{Factor out } \cos^2{x}\right)\)
\(\,\,\,\,\, \cos^2{x}\left(\csc^2{x} -1\right) =\cot ^2 {x} \cos ^2 {x} \,\,\,\,\,\left(\csc^2{x}=\frac{1}{\sin^2{x}}\right)\)
\(\,\,\,\,\, \cos^2{x}\left(\cot^2{x}\right) =\cot ^2 {x} \cos ^2 {x} \,\,\,\,\,\left(\cot^2{x}=\csc^2{x}-1\right)\)
\(\,\,\,\,\, \cot^2{x}\cos^2{x} =\cot ^2 {x} \cos ^2 {x} \,\,\,\,\,\left(\text{Commutative Property of Multiplication}\right)\)
\(\textbf{18)}\) \( (\sin{x}+\cos{x})^4 = (1+2\sin{x}\cos{x})^2 \)
\(\,\,\,\,\, (\sin{x}+\cos{x})^4 = (1+2\sin{x}\cos{x})^2 \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \left((\sin{x}+\cos{x})^2\right)^2 = (1+2\sin{x}\cos{x})^2 \,\,\,\,\,\left(x^4=\left(x^2\right)^2\right)\)
\(\,\,\,\,\, \left((\sin{x}+\cos{x})(\sin{x}+\cos{x})\right)^2 = (1+2\sin{x}\cos{x})^2 \,\,\,\,\,\left(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)\right)\)
\(\,\,\,\,\, \left(\sin^2{x}+2\sin{x}\cos{x}+\cos^2{x}\right)^2 = (1+2\sin{x}\cos{x})^2 \,\,\,\,\,\left(\left(a+b\right)\left(a+b\right)=a^2+2ab+b^2\right)\)
\(\,\,\,\,\, \left(1+2\sin{x}\cos{x}\right)^2 = \left(1+2\sin{x}\cos{x}\right)^2 \,\,\,\,\,\left(\sin^2{x}+2\sin{x}\cos{x}+\cos^2{x}\right)\)
\(\textbf{19)}\) \( \displaystyle \frac{\sec{x}}{\sec{x}-\cos{x}} = \csc^2{x} \)
\(\,\,\,\,\, \displaystyle \frac{\sec{x}}{\sec{x}-\cos{x}} = \csc^2{x} \,\,\,\,\,\left(\text{Given}\right)\)
\(\,\,\,\,\, \displaystyle \frac{\sec{x}}{\frac{1}{\cos{x}}}-\frac{\cos{x}}{1} = \csc^2{x} \,\,\,\,\,\left(\sec{x}=\frac{1}{\cos{x}}\right)\)
\(\,\,\,\,\, \displaystyle \frac{\sec{x}}{\frac{1}{\cos{x}}}-\frac{\cos{x}}{1} \cdot \frac{\cos{x}}{\cos{x}} = \csc^2{x} \,\,\,\,\,\left(\frac{\cos{x}}{\cos{x}}=1\right)\)
\(\,\,\,\,\, \displaystyle \frac{\sec{x}}{\frac{1}{\cos{x}}}- \frac{\cos^2{x}}{\cos{x}} = \csc^2{x} \,\,\,\,\,\left(\cos{x}\cos{x}=\cos^2{x}\right)\)
\(\,\,\,\,\, \displaystyle \frac{\sec{x}}{\frac{1-\cos^2{x}}{\cos{x}}} = \csc^2{x} \,\,\,\,\,\left(\text{Fractions with common denominators}\right)\)
\(\,\,\,\,\, \displaystyle \frac{\sec{x}}{\frac{sin^2{x}}{\cos{x}}} = \csc^2{x} \,\,\,\,\,\left(\sin^2{x}=1-\cos^2{x}\right)\)
\(\,\,\,\,\, \displaystyle \frac{1}{\cos{x} \cdot \frac{sin^2{x}}{\cos{x}}} = \csc^2{x} \,\,\,\,\,\left(\sec{x}=\frac{1}{\cos{x}}\right)\)
\(\,\,\,\,\, \displaystyle \frac{1}{sin^2{x}} = \csc^2{x} \,\,\,\,\,\left(\frac{\cos{x}}{\cos{x}}=1\right)\)
\(\,\,\,\,\, \displaystyle \csc^2{x} = \csc^2{x} \,\,\,\,\,\left(\csc{x}=\frac{1}{\sin{x}}=1\right)\)
\(\textbf{20)}\) \( (\csc{x}-\cot{x})(\cos{x}+1)=\sin{x} \)
\(\textbf{21)}\) \( 2\sin ^2 {x} -1=1-2\cos ^2 {x} \)
\(\textbf{22)}\) \( \sin ^4 {x} -\cos ^4 {x} =\sin ^2 {x} -\cos ^2 {x} \)
\(\textbf{23)}\) \( (1-\sin ^2 {x} )(1+\sin ^2 {x} )=1-\sin ^4 {x} \)
\(\textbf{24)}\) \( \displaystyle \frac{\tan{x}+\cot{x}}{\sin{x}\cos{x}} =\sec^2{x}+\csc^2{x} \)
\(\textbf{25)}\) \( \displaystyle \frac{1-\tan^2{x}}{1+\tan^2{x}}=\cos^2{x} -\sin^2{x} \)
\(\textbf{26)}\) \( \displaystyle \frac{1+\sec^2{x}}{1+\tan^2{x}}=1+\cos^2{x} \)
\(\textbf{27)}\) \( \displaystyle \frac{\sin{x} +\cos{x} }{\sec{x} +\csc{x} }= \sin{x} \cos{x} \)
\(\textbf{28)}\) \( \displaystyle \frac{\csc{x} +\sec{x} }{\cot{x} +\tan{x} }= \sin{x} +\cos{x} \)
\(\textbf{29)}\) \( \displaystyle \frac{1-\cos{x}}{\sin{x} }+\frac{\sin{x}}{1-\cos{x}}= 2\csc{x} \)
\(\textbf{30)}\) \( \displaystyle \frac{\cot{x} -\csc{x} }{1-\sec{x} }=\cot{x} \)
\(\textbf{31)}\) \( \tan ^2 {x} -\sin ^2 {x} =\tan ^2 {x} \sin ^2 {x} \)
\(\textbf{32)}\) \( \sec ^4 {x} -\tan ^4 {x} =\sec ^2 {x} +\tan ^2 {x} \)
\(\textbf{33)}\) \( \cos ^2 {x} -cos ^4 {x} =\cos ^2 {x} \sin ^2 {x} \)
\(\,\,\,\,\,\, \cos ^2 {x} -cos ^4 {x} =\cos ^2 {x} \sin ^2 {x} \,\,\,\,\, \left(\text{Given}\right) \)
\(\,\,\,\,\,\, \cos ^2 {x}\left( 1 -cos ^2 {x}\right) =\cos ^2 {x} \sin ^2 {x} \,\,\,\,\, \left(\text{Factor out } \cos^2 {x}\right) \)
\(\,\,\,\,\,\, \cos ^2 {x}\left( \sin^2 {x}\right) =\cos ^2 {x} \sin ^2 {x} \,\,\,\,\, \left(1-\cos^2{x}=\sin^2 {x}\right) \)
\(\,\,\,\,\,\, \cos ^2 {x} \sin^2 {x} =\cos ^2 {x} \sin ^2 {x} \,\,\,\,\, \left(\text{Simplify}\right) \)
\(\textbf{34)} \) \( \displaystyle \frac{\sin{2x}}{\sin{x}}-\frac{\cos{2x}}{\cos{x}}=\sec{x}\)
\(\,\,\,\,\,\displaystyle\frac{\sin{2x}}{\sin{x}}-\frac{\cos{2x}}{\cos{x}}=\sec{x}\,\,\,\,\, \left(\text{Given}\right) \)
\(\,\,\,\,\,\displaystyle\frac{2\sin{x}\cos{x}}{\sin{x}}-\frac{2\cos^2{x}-1}{\cos{x}}=\sec{x}\,\,\,\,\, \left(\text{Double Angle Formulas}\right) \)
\(\,\,\,\,\,\displaystyle\frac{2\cos{x}}{1}-\frac{2\cos^2{x}-1}{\cos{x}}=\sec{x}\,\,\,\,\, \left(\text{Simplify}\right) \)
\(\,\,\,\,\,\displaystyle\frac{2\cos^2{x}}{\cos{x}}-\frac{2\cos^2{x}-1}{\cos{x}}=\sec{x}\,\,\,\,\, \left(\text{Common Denominator}\right) \)
\(\,\,\,\,\,\displaystyle\frac{2\cos^2{x}-\left(2\cos^2{x}-1\right)}{\cos{x}}=\sec{x}\,\,\,\,\, \left(\text{Combine into 1 fraction}\right) \)
\(\,\,\,\,\,\displaystyle\frac{2\cos^2{x}-2\cos^2{x}+1}{\cos{x}}=\sec{x}\,\,\,\,\, \left(\text{Distribute the negative}\right) \)
\(\,\,\,\,\,\displaystyle\frac{1}{\cos{x}}=\sec{x}\,\,\,\,\, \left(\text{Simplify}\right) \)
\(\,\,\,\,\,\sec{x}=\sec{x}\,\,\,\,\, \left(\text{Reciprocal Identities}\right) \)
\(\textbf{35)} \) \( \displaystyle \frac{1-\tan^2{x}}{1+\tan^2{x}}=\cos{2x}\)
\(\,\,\,\,\,\displaystyle\frac{1-\tan^2{x}}{1+\tan^2{x}}=\cos{2x}\,\,\,\,\, \left(\text{Given}\right) \)
\(\,\,\,\,\,\displaystyle\frac{1-\tan^2{x}}{\sec^2{x}}=\cos{2x}\,\,\,\,\, \left(\text{Pythagorean Identities}\right) \)
\(\,\,\,\,\,\displaystyle\frac{\cos^2{x}\left(1-\tan^2{x}\right)}{1}=\cos{2x}\,\,\,\,\, \left(\text{Reciprocal Identities}\right) \)
\(\,\,\,\,\,\cos^2{x}-\cos^2{x}\tan^2{x}=\cos{2x}\,\,\,\,\, \left(\text{Distribution}\right) \)
\(\,\,\,\,\,\cos^2{x}-\cos^2{x}\frac{\sin^2{x}}{\cos^2{x}}=\cos{2x}\,\,\,\,\, \left(\text{Quotient Identities}\right) \)
\(\,\,\,\,\,\cos^2{x}-\sin^2{x}=\cos{2x}\,\,\,\,\, \left(\text{Simplify}\right)\)
\(\,\,\,\,\,\cos{2x}=\cos{2x}\,\,\,\,\, \left(\text{Double Angle Formulas}\right)\)
\(\textbf{36)}\) \(\displaystyle \frac{\sin ^2{x}}{1-\cos{x}}= \cos{x}+1\)
\(\textbf{37)}\) \(\displaystyle \left(\cot{x}\right)\left(\cot{x}+\tan{x}\right)= \csc ^2{x}\)
\(\textbf{38)}\) \(\displaystyle \frac{1+\tan ^2{x}}{\csc ^2{x}}= \tan ^2{x}\)
\(\textbf{39)}\) \(\displaystyle \cos ^2{x}+\tan ^2{x}\cos ^2{x}=1\)
See Related Pages\(\)
In Summary
Trigonometry identities show all the unique ways that trigonometric functions like sine, cosine, tangent, cotangent, secant, and cosecant interact with each other.
One The most commonly used trigonometry identities are the Pythagorean Identities.
\(\sin^2 \theta + \cos^2 \theta = 1\)
\(1 + \tan^2 \theta = \sec^2 \theta\)
\(1+ \cot^2 \theta = \csc^2 \theta\)
Here is a video explaining how these are derived.
There are many other useful trigonometric identities. Try the examples above to see how they can be used to verify other trigonometric identities.
About Andymath.com
Andymath.com is a free math website with the mission of helping students, teachers and tutors find helpful notes, useful sample problems with answers including step by step solutions, and other related materials to supplement classroom learning. If you have any requests for additional content, please contact Andy at tutoring@andymath.com . He will promptly add the content.
Topics cover Elementary Math , Middle School , Algebra , Geometry , Algebra 2/Pre-calculus/Trig , Calculus and Probability/Statistics . In the future, I hope to add Physics and Linear Algebra content.
Visit me on Youtube , Tiktok , Instagram and Facebook . Andymath content has a unique approach to presenting mathematics. The clear explanations, strong visuals mixed with dry humor regularly get millions of views. We are open to collaborations of all types, please contact Andy at tutoring@andymath.com for all enquiries. To offer financial support, visit my Patreon page. Let’s help students understand the math way of thinking!
Thank you for visiting. How exciting!