Andymath.com features free videos, notes, and practice problems with answers! Printable pages make math easy. Are you ready to be a mathmagician?
Lesson
Notes
Questions
Verify the following.
\(\textbf{1)}\) \( \csc ^2 {x} (1-\cos ^2 {x}) = 1 \)
\(\textbf{2)}\) \( \tan ^2 {x} (\csc ^2 {x}-1) = 1 \)
\(\textbf{3)}\) \( \sec{x} – \cos{x} =\frac{\tan^2{x}}{\sec{x} } \)
\(\textbf{4)}\) \( \sin ^2 {x} -\cos ^2 {x} = 1-2\cos ^2 {x} \)
\(\textbf{5)}\) \( -\sec{x}\tan{x} = \frac{\csc{x}}{1-\csc^2{x}} \)
\(\textbf{6)}\) \( \tan ^2 {x} -\sin ^2 {x} =\tan ^2 {x} \sin ^2 {x} \)
\(\textbf{7)}\) \( \frac{\sin{x}\cos{x}}{(\sin{x}+\cos{x})^2-1}=\frac{1}{2} \)
\(\textbf{8)}\) \( \sin{x} + \csc{x}\cos^2{x} = \csc{x} \)
\(\textbf{9)}\) \( \cot ^2 {x} -\cos ^2 {x} =\cot ^2 {x} \cos ^2 {x} \)
\(\textbf{10)}\) \( (\sin{x}+\cos{x})^4 = (1+2\sin{x}\cos{x})^2 \)
\(\textbf{11)}\) \( \frac{\sec{x}}{\sec{x}-\cos{x}} = \csc^2{x} \)
\(\textbf{12)}\) \( (\csc{x}-\cot{x})(\cos{x}+1)=\sin{x} \)
\(\textbf{13)}\) \( 2\sin ^2 {x} -1=1-2\cos ^2 {x} \)
\(\textbf{14)}\) \( \sin ^4 {x} -\cos ^4 {x} =\sin ^2 {x} -\cos ^2 {x} \)
\(\textbf{15)}\) \( (1-\sin ^2 {x} )(1+\sin ^2 {x} )=1-\sin ^4 {x} \)
\(\textbf{16)}\) \( \frac{\tan{x}+\cot{x}}{\sin{x}\cos{x}} =\sec^2{x}+\csc^2{x} \)
\(\textbf{17)}\) \( \frac{1-\tan^2{x}}{1+\tan^2{x}}=\cos^2{x} -\sin^2{x} \)
\(\textbf{18)}\) \( \frac{1+\sec^2{x}}{1+\tan^2{x}}=1+\cos^2{x} \)
\(\textbf{19)}\) \( \tan ^2 {x} -\sin ^2 {x} =\tan ^2 {x} \sin ^2 {x} \)
\(\textbf{20)}\) \( \sec ^4 {x} -\tan ^4 {x} =\sec ^2 {x} +\tan ^2 {x} \)
See Related Pages\(\)
\(\bullet\text{ Right Triangle Trigonometry}\)
\(\,\,\,\,\,\,\,\,\sin{(x)}=\displaystyle\frac{\text{opp}}{\text{hyp}}…\)
\(\bullet\text{ Angle of Depression and Elevation}\)
\(\,\,\,\,\,\,\,\,\text{Angle of Depression}=\text{Angle of Elevation}…\)
\(\bullet\text{ Convert to Radians and to Degrees}\)
\(\,\,\,\,\,\,\,\,\text{Radians} \rightarrow \text{Degrees}, \times \displaystyle \frac{180^{\circ}}{\pi}…\)
\(\bullet\text{ Degrees, Minutes and Seconds}\)
\(\,\,\,\,\,\,\,\,48^{\circ}34’21”…\)
\(\bullet\text{ Coterminal Angles}\)
\(\,\,\,\,\,\,\,\,\pm 360^{\circ} \text { or } \pm 2\pi n…\)
\(\bullet\text{ Reference Angles}\)
\(\,\,\,\,\,\,\,\,\)\(…\)
\(\bullet\text{ Find All 6 Trig Functions}\)
\(\,\,\,\,\,\,\,\,\)\(…\)
\(\bullet\text{ Unit Circle}\)
\(\,\,\,\,\,\,\,\,\sin{(60^{\circ})}=\displaystyle\frac{\sqrt{3}}{2}…\)
\(\bullet\text{ Law of Sines}\)
\(\,\,\,\,\,\,\,\,\displaystyle\frac{\sin{A}}{a}=\frac{\sin{B}}{b}=\frac{\sin{C}}{c}\) \(…\)
\(\bullet\text{ Area of SAS Triangles}\)
\(\,\,\,\,\,\,\,\,\text{Area}=\frac{1}{2}ab \sin{C}\) \(…\)
\(\bullet\text{ Law of Cosines}\)
\(\,\,\,\,\,\,\,\,a^2=b^2+c^2-2bc \cos{A}\) \(…\)
\(\bullet\text{ Area of SSS Triangles (Heron’s formula)}\)
\(\,\,\,\,\,\,\,\,\text{Area}=\sqrt{s(s-a)(s-b)(s-c)}\) \(…\)
\(\bullet\text{ Geometric Mean}\)
\(\,\,\,\,\,\,\,\,x=\sqrt{ab} \text{ or } \displaystyle\frac{a}{x}=\frac{x}{b}…\)
\(\bullet\text{ Geometric Mean- Similar Right Triangles}\)
\(\,\,\,\,\,\,\,\,\)\(…\)
\(\bullet\text{ Inverse Trigonmetric Functions}\)
\(\,\,\,\,\,\,\,\,\sin {\left(cos^{-1}\left(\frac{3}{5}\right)\right)}…\)
\(\bullet\text{ Sum and Difference of Angles Formulas}\)
\(\,\,\,\,\,\,\,\,\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}…\)
\(\bullet\text{ Double-Angle and Half-Angle Formulas}\)
\(\,\,\,\,\,\,\,\,\sin{(2A)}=2\sin{(A)}\cos{(A)}…\)
\(\bullet\text{ Trigonometry-Pythagorean Identities}\)
\(\,\,\,\,\,\,\,\,\sin^2{(x)}+\cos^2{(x)}=1…\)
\(\bullet\text{ Product-Sum Identities}\)
\(\,\,\,\,\,\,\,\,\cos{\alpha}\cos{\beta}=\left(\displaystyle\frac{\cos{(\alpha+\beta)}+\cos{(\alpha-\beta)}}{2}\right)…\)
\(\bullet\text{ Cofunction Identities}\)
\(\,\,\,\,\,\,\,\,\sin{(x)}=\cos{(\frac{\pi}{2}-x)}…\)
\(\bullet\text{ Proving Trigonometric Identities}\)
\(\,\,\,\,\,\,\,\,\sec{x}-\cos{x}=\displaystyle\frac{\tan^2{x}}{\sec{x}}…\)
\(\bullet\text{ Graphing Trig Functions- sin and cos}\)
\(\,\,\,\,\,\,\,\,f(x)=A \sin{B(x-c)}+D \) \(…\)
\(\bullet\text{ Solving Trigonometric Equations}\)
\(\,\,\,\,\,\,\,\,2\cos{(x)}=\sqrt{3}…\)
\(\bullet\text{ Andymath Homepage}\)
About Andymath.com
Andymath.com is a free math website with the mission of helping students, teachers and tutors find helpful notes, useful sample problems with answers including step by step solutions, and other related materials to supplement classroom learning. If you have any requests for additional content, please contact Andy at tutoring@andymath.com. He will promptly add the content.
Topics cover Elementary Math, Middle School, Algebra, Geometry, Algebra 2/Pre-calculus/Trig, Calculus and Probability/Statistics. In the future, I hope to add Physics and Linear Algebra content.
Visit me on Youtube, Tiktok, Instagram and Facebook. Andymath content has a unique approach to presenting mathematics. The clear explanations, strong visuals mixed with dry humor regularly get millions of views. We are open to collaborations of all types, please contact Andy at tutoring@andymath.com for all enquiries. To offer financial support, visit my Patreon page. Let’s help students understand the math way of thinking!
Thank you for visiting. How exciting!